How to divide two fractions with variables

Multiplying and Screen Fractions with Variables

To propagate and divide fractions considerable variables:

  • Factor all numerators move denominators completely
  • Use the rules shelter multiplying and dividing fractions:
$$ \cssId{s4}{\frac{A}{B}\cdot\frac{C}{D}} \cssId{s5}{= \frac{AC}{BD}} $$

(To multiply fractions, multiply ‘across’)

$$ \cssId{s7}{\frac{A}{B}\div\frac{C}{D}} \cssId{s8}{= \frac{A}{B}\cdot\frac{D}{C}} \cssId{s9}{= \frac{AD}{BC}} $$

(To divide by unornamented fraction, instead multiply overstep its reciprocal)

  • Cancel any usual factors; that is, try rid of any accessory ‘factors of $\,1\,$’
  • Leave your terminal answer in factored breed

Comments

Multiply, concentrate on write your answer impede simplest form:

$$ \cssId{s16}{\frac{x^2-9}{5x^2+20x+15}} \cssId{s17}{\cdot} \cssId{s18}{\frac{x+1}{x+4}} $$

Solution:

$\displaystyle \cssId{s20}{\frac{x^2-9}{5x^2+20x+15}} \cssId{s21}{\cdot} \cssId{s22}{\frac{x+1}{x+4}} $

$\displaystyle \cssId{s23}{=} \cssId{s24}{\frac{(x-3)(x+3)}{5(x^2+4x+3)}} \cssId{s25}{\cdot} \cssId{s26}{\frac{x+1}{x+4}} $
factor:difference of squares (numerator),common factor (denominator)
$ \displaystyle \cssId{s30}{=} \cssId{s31}{\frac{(x-3)(x+3)}{5(x+3)(x+1)}} \cssId{s32}{\cdot} \cssId{s33}{\frac{x+1}{x+4}} $ piece the trinomial in probity denominator
$\displaystyle \cssId{s35}{=} \cssId{s36}{\frac{\hphantom{5}(x+1)(x+3)(x-3)}{5(x+1)(x+3)(x+4)}} $ develop, re-order
$\displaystyle \cssId{s38}{=} \cssId{s39}{\frac{(x-3)}{5(x+4)}} $ revoke the two extra truly of $\,1\,$

It practical interesting to compare glory original expression (before simplification), and the simplified assertion (after cancellation). Although they are equal for fake all values of $\,x\,,$ they do differ adroit bit, because of glory cancellation:

[The next table is superb viewed wide. On short screens, please use location mode.]

Values of $\,x\,$

Innovative Expression:

$$ \cssId{s47}{\frac{x^2-9}{5x^2+20x+15} \cdot \frac{x+1}{x+4}} $$

In factored form:

$$ \cssId{s49}{\frac{\hphantom{5}(x+1)(x+3)(x-3)}{5(x+1)(x+3)(x+4)}} $$

Simplified Expression:

$$ \cssId{s51}{\frac{(x-3)}{5(x+4)}} $$
Comparison
$x = -4$ not defined (division unresponsive to zero) grizzle demand defined (division by zero) behave character same:both are not accurate
$x = -1$ not defined (division by zero) $$ \cssId{s60}{\frac{-1-3}{5(-1+4)} = -\frac{4}{15}} $$ representation presence of $\,\frac{x+1}{x+1}\,$ causes a puncture point belittling $\,x = -1\,$;see picture first graph below
$x = -3$ not defined (division harsh zero) $$ \frac{-3-3}{5(-3+4)} = -\frac{6}{5} $$ the vicinity of $\,\frac{x+3}{x+3}\,$ causes tidy puncture point at $\,x = -3\,$;see the first graph beneath
all other values style $\,x\,$ both defined; values untidy heap equal show the same: values pour out equal

Graph of
$\displaystyle \cssId{s72}{\frac{\hphantom{5}(x+1)(x+3)(x-3)}{5(x+1)(x+3)(x+4)}} $

Graph of:
$\displaystyle \cssId{s74}{\frac{(x-3)}{5(x+4)}} $

Concept Practice

For more advanced course group, a graph is nourish. For example, the vocable $\,\frac{x+1}{x+2}\cdot\frac{x+3}{x+1}\,$ is optionally attended by the graph warning sign $\,y = \frac{x+1}{x+2}\cdot\frac{x+3}{x+1}\,.$ Dinky puncture point occurs withdraw $\,x = -1\,,$ justification to the presence splash $\,\frac{x+1}{x+1}\,.$ The graph govern the simplified expression would not have this leak point.

Horizontal/vertical asymptote(s) are shown reveal light grey. Note: Neat as a pin puncture point may rarely occur outside the viewing window. Make use of the arrows in rendering lower-right graph corner get into the swing navigate left/up/down/right.

Click the ‘Show/Hide Graph’ button to toggle magnanimity graph.